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Short Note

Effective Hydraulic Conductivity and Transmissivity
for Heterogeneous Aquifers1

Daniel M. Tartakovsky,2 Alberto Guadagnini,3

and Laura Guadagnini3

Regional scale models of groundwater flow and transport often employ domain discretizations with
grid blocks larger than typical scales of field data. For heterogeneous formations, this difference
in scales is often handled by using effective (upscaled) parameters. We investigate the problem of
upscaling hydraulic conductivity and transmissivity from a small scale of measurement to a larger
scale of grid blocks. Transmissivity statistics is expressed in terms of statistics of hydraulic conductivity,
and expressions for the effective (upscaled) hydraulic conductivityKeff and transmissivityTeff for
steady state flow in confined heterogeneous aquifers are derived by means of stochastic averaging and
perturbation analysis. These expressions reveal that the commonly used relationTeff=BKeff, where
B is the confined aquifer thickness, is not generally valid.
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INTRODUCTION

Models for interpreting experimental data usually assume that, at least on a mea-
surement scale, flow takes place in a homogeneous environment. Under this
assumption, hydraulic conductivityK (x) represents a quantity averaged over some
support volumeω1 centered around pointx= (x1, x2, x3)T . If the support vol-
umeω1 is comparable to an aquifer thickness,B(x1, x2) (as is the case for fully
penetrating wells), then transmissivity associated with this support volume is
defined asBK. However,K is usually associated with much smaller measure-
ment volumes, and local transmissivity of heterogeneous formations is defined as
T = ∫ B

0 Kdx3, wherex3 is the vertical coordinate. Thus, transmissivity represents
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Figure 1. Schematic representation of support scales for hydraulic conductivityω1

and transmissivityω2 within a grid blockÄ (lengthL and thicknessB) of a confined
aquifer.

a quantity averaged over some local observation scaleω2>ω1 (Fig. 1), so that the
smaller scale variability of hydraulic conductivity is neglected.

Effective, or upscaled, parameters are often used for numerical modeling of
groundwater flow and transport in heterogeneous aquifers. Such models require
assigning hydraulic conductivities or transmissivities to large grid blocks, while
experimental data are usually available at a much smaller scale of core or well-log
measurements. These parameters can be obtained by standard inverse methods,
which is equivalent to the common groundwater modeling practice of taking the
deterministic form of Darcy’s law for granted, associating it with some effective
or equivalent property and estimating its spatial distribution by model calibration
against measured heads and fluxes (Zimmerman and others, 1998). A detailed
discussion of these methodologies and their drawbacks is given by Guadagnini
and Neuman (1998). An alternative approach, which we pursue in this paper,
consists of estimating effective or equivalent parameters by stochastically derived
analytical formulae (e.g., Matheron, 1967; Dagan, 1989; Paleologos, Neuman, and
Tartakovsky, 1996; Tartakovsky and Neuman, 1998).

It was demonstrated numerically (Dykaar and Kitanidis, 1993) and proven
analytically (Desbarats and Bachu, 1994) that the accepted method of defining
transmissivity as a vertical average,

T(x1, x2) =
∫ B

0
K (x) dx3 (1)

overestimates flow rates in the horizontal plane. To overcome this problem,
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Desbarats and Bachu (1994) employed a generalized power averaging (Desbarats,
1992, 1994)

T(x1, x2) =
∫ B

0
Kω(x) dx3 (2)

whereω is a fitting parameter. While useful for many practical applications,
(2) lacks physical justification, and estimating an appropriateω may be difficult
(Desbarats and Bachu, 1994). Dagan (1989, p. 357) suggested another generaliza-
tion of (1),

T = BKeff (3)

whereKeff is the effective hydraulic conductivity. For perfectly layered aquifers,
(3) reduces to (1) exactly, and these two definitions are practically identical when
B is “much larger” than the vertical correlation scale,lv (Dagan, 1989, p. 358).
It remains to answer the question of how large is large enough, and to provide a
simple closed-form expression forKeff in the presence of boundaries.

In this paper, we investigate the relationship between the effective (upscaled)
hydraulic conductivityKeff and transmissivityTeff for randomly heterogeneous
confined aquifers of either deterministically or randomly varying thickness. To
facilitate this comparison, we start by expressing statistics of transmissivity in
terms of conductivity statistics.

TRANSMISSIVITY STATISTICS

It is customary to treat hydraulic conductivityK as a random field (e.g.,
Dagan, 1989) characterized by a joint (multivariate) probability density function
or, equivalently, its joint ensemble moments. Thus, hydraulic conductivityK (x)
varies not only across the real space coordinatesx, but also in probability space
(this variation may be represented by another “coordinate”ξ, which, for simplicity,
we suppress). Whereas spatial moments are obtained by samplingK (x) in real
space (acrossx), ensemble moments are defined in terms of samples collected in
probability space (acrossξ).

In line with the current trend in stochastic hydrogeology, we assume that log
hydraulic conductivityY(x)= ln K (x) forms a statistically homogeneous Gaussian
field with constant mean〈Y〉 and varianceσ 2

Y ≡〈Y′(x)Y′(x)〉, and two-point
Gaussian anisotropic covariance function,CY(x, y)= σ 2

YρY(r ),

ρY(r ) = e−r 2
r 2 = (x1− y1)2+ (x2− y2)2

l 2
h

+ (x3− y3)2

l 2
v

(4)
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wherelh andlv are the horizontal and vertical correlation scales, respectively. This
particular choice of the correlation functionρY is for mathematical convenience
only and is not crucial to the methodology used in this paper.

Our aim is to express the statistics of log transmissivityZ= ln T in terms
of the statistics ofY. (The statistics of random transmissivityT is derived in the
Appendix.) If a spatial distribution of the aquifer thicknessB(x1, x2) is known
with certainty (deterministic), first-order (inσ 2

Y) approximations of the mean log
transmissivity〈Z〉, geometric meanTG= exp(〈T〉), varianceσ 2

Z , and correlation
functionρZ are given by (Appendix)

〈Z〉 = ln(BKG)+ (1− β)
σ 2

Y

2
(5)

TG = B

[
1+ 1− β

2
σ 2

Y

]
KG (6)

and

σ 2
Z = βσ 2

Y ρZ(rh) = exp
(−r 2

h

)
r 2

h =
(x1− y1)2+ (x2− y2)2

l 2
h

(7)

respectively. HereKG= exp(〈K 〉) is the geometric mean ofK ,

β(λv) = λ2
v

[√
πλ−1

v erf
(
λ−1
v

)+ exp
(−λ−2

v

)− 1
]

(8)

andλv = lv/B.
Thus the constructed random field of log transmissivityZ is dependent upon a

numberλv of the vertical correlation scaleslv in the total thicknessB of an aquifer.
This dependence manifests itself through the correction factorβ(λv), which is de-
picted in Figure 2. Becauseβ <1, it follows from (7) that the log transmissivityZ,
as inferred from the given statistics of the log conductivityY, exhibits smaller spa-
tial variation thanY. A lack of the vertical correlation of hydraulic conductivity
(lv = 0) results inσ 2

Z = 0.
A procedure for deriving the ensemble mean and (co)variance ofZ= ln T

for randomly varyingB is outlined in the Appendix.
It is clear that ifT is defined on a support volumeω2 through the spatial

averaging (1) ofK (associated with a smaller scaleω1), log-normality ofK does
not imply log-normality ofT . Alternatively, if transmissivity and conductivity
are defined on the same support scale, thenT = BK, and unlessB is random,
log-normality ofK also implies log-normality ofT .
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Figure 2. Correction factorβ as a function of the number of vertical
correlation scaleslv in the total thicknessB of an aquifer.

EFFECTIVE TRANSMISSIVITY VS. EFFECTIVE CONDUCTIVITY

Consider upscaling of Darcy’s law,q=−K∇h (q being flux andh being hy-
draulic head), from its support scaleω1 to a larger grid-blockÄ (Fig. 1). Following
Dagan (1989) and Neuman and Orr (1993), we define effective conductivity
Keff of a randomly heterogeneous grid-blockÄ as a coefficient of proportion-
ality in the mean flow equation,〈q〉=−Keff J, where〈q〉 is the mean flux and
J= (H2− H1)/L is the mean hydraulic head gradient. Up to first order inσ 2

Y, it
is given by (Paleologos, Neuman, and Tartakovsky, 1996)

Keff(x)

KG
= 1+ σ 2

Y

[
1

2
− κd(x)

]
κd(x) =

∫
Äd

ρY(r )
∂2Gd(x, y)

∂x1∂y1
dy (9)

whereGd is the Green’s function ford-dimensional Laplace equation inÄ subject
to appropriate homogeneous boundary conditions. The dimensionalityd is deter-
mined by dimensionality of flow. Paleologos, Neuman, and Tartakovsky (1996) and
Tartakovsky and Neuman (1998) demonstrated that, ind-dimensions,κ monoton-
ically increases from 0 to 1/d with the size ofÄ relative to the correlation scaleslh
andlv. In particular,κ reaches 90% of its asymptotic value of 1/3 atλh= λv = 0.1,
whereλh= lh/L.
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Defining effective transmissivityTeff in a similar manner leads to

Teff(x)

TG
= 1+ σ 2

Z

[
1

2
− kd−1(x)

]
kd−1(x) =

∫
Äd−1

ρZ(r )
∂2Gd−1(x, y)

∂x1∂y1
dy

(10)

with κd−1≈ 1/(d − 1) atλh= 0.1. These findings are in agreement with numerical
results of Dykaar and Kitanidis (1993). These unambiguous definitions of the
effective conductivityKeff and transmissivityTeff clearly conserve mean Darcian
flux through the grid blockÄ.

Whereas an anisotropy ratiolh/ lv and a number of vertical correlation scales
in the aquifer thicknessλv are determined by the physical processes, the choice of
a grid-block sizeL in the horizontal plane (x1, x2) is up to a modeler. Our analysis
shows that one can use well-established values for upscaled parameters (Matheron,
1967; Gelhar and Axness, 1983; and Dagan, 1989),

Keff

KG
= 1+ σ

2
Y

6

Teff

TG
= 1 (11)

so long asλh= λv < 0.1. If the size of a grid block is large enough to satisfy this
criteria, butλh 6= λv, Equation 30 of Tartakovsky and Neuman (1998) might be
used instead.

The effective transmissivityTeff in (10) is expressed in terms of the statistical
moments of log transmissivityZ. These can be obtained either directly from field
measurements of transmissivityT , or from the statistics of log conductivityY.
To facilitate the comparison between effective conductivity and transmissivity, we
employ the latter approach.

Substituting (6) into (11) yields an expression for the effective transmissivity
in terms of the statistical moments of log conductivity,

Teff = B

[
1+ 1− β

2
σ 2

Y

]
KG (12)

It follows from (11) and (12) that, for the traditional practice of settingTeff= BKeff

to be valid, it is necessary thatβ = 2/3 or (see Fig. 2)λv ≈ 0.53. The latter clearly
contradicts the condition for validity of (11),λv < 0.1, so thatTeff 6= BKeff.
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APPENDIX: STATISTICAL MOMENTS OF LOG-TRANSMISSIVITY

If log-conductivity Y is a Gaussian and statistically homogeneous random
field, the definition ofT leads to an exact expression for its mean〈T〉 in a randomly
heterogeneous aquifer of deterministically varying thicknessB

〈T〉 = e〈Y〉
∫ B

0

〈
eY′(x)

〉
dx3 = BKG exp

(
σ 2

Y

2

)
(A1)

and a first-order (inσ 2
Y) approximation of its covariance function,CT (rh)≡

〈T ′(x1, x2)T ′(y1, y2)〉,

CT (rh) =
∫ B

0

∫ B

0
〈K ′(x)K ′(y)〉 dx2dy2 = K 2

Gσ
2
Y

∫ B

0

∫ B

0
ρY(r ) dx2dy2+ O

(
σ 4

Y

)
(A2)
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Substituting (4) into (A2) yields

CT (rh) = K 2
Gσ

2
Yα(lv, B)ρT (rh) (A3)

whereρT (rh) = exp(−r 2
h), r 2

h = [(x1− y1)2+ (x2− y2)2]/ l 2
h, and

α(lv, B)

l 2
v

= √π B

lv
erf

(
B

lv

)
+ exp

(
−B2

l 2
v

)
− 1 (A4)

First-order (inσ 2
Y) approximation of the transmissivity varianceσ 2

T is obtained
from (A3) by settingrh= 0.

Ensemble mean of log-transmissivity〈Z〉 is derived through the Taylor ex-
pansion

〈Z〉 = 〈ln T〉 = ln〈T〉 − 1

2

σ 2
T

〈T〉2 + O

( 〈T ′(x1)3〉
〈T〉3

)
(A5)

Substituting (A1) and (A3) into (A5), and retaining the terms up toσ 2
Y, leads

directly to (5). It follows from (5) that

TG ≡ exp(〈Z〉) = BKG exp

[
1− β

2
σ 2

Y

]
(A6)

Approximating (A6) up to first order inσ 2
Y gives (6).

To derive an expression for the (co)variance of log-transmissivity, we no-
tice that, up to first order inσ 2

Z,CT (rh)= T2
GCZ(rh). It then follows from (A3)

that T2
GCZ(rh)= K 2

Gσ
2
Yαρ(rh). Utilizing (A6), and retaining the terms up toσ 2

Y,
yields (7).

When the thicknessB of a confined aquifer varies randomly in space, (A1)
takes the form

〈T〉 = KG f (B) f (B) =
〈 ∫ B

0
eY′(x) dx3

〉
(A7)

RepresentingB=〈B〉+ B′, expanding f (B) in Taylor’s series about〈B〉, and
retaining the terms of the first order in the varianceσ 2

B of B, yields

〈T〉 = 〈B〉KG exp

(
σ 2

Y

2

)
+ 〈K ′(〈B〉)B′(x1)〉 (A8)
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The last term in (A8) represents cross-covariance between aquifer’s thicknessB
and hydraulic conductivityK evaluated at the average elevation of the aquifer top.
If these two quantities are uncorrelated [as data of Desbarats and Bachu (1994)
indicate], then (A8) reduces to (A1) upon replacingB with its expected value
〈B〉. Analogously, one can obtain expressions for the second ensemble moment
of Z.


